函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等
f(x)(n)阶可导,只能推出(n-1)阶导数连续,所以一个函数求出的导数是不知道其是否连续,甚至不能判断是否有极限!例如函数:f(x)=x².sin(1/x) (x≠0);
f(x)=0 (x=0);
此函数是处处可导的!,但lim(x→0) f'(x)=lim (2x.sin(1/x)-cos(1/x))是不存在的
函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等
f(x)(n)阶可导,只能推出(n-1)阶导数连续,所以一个函数求出的导数是不知道其是否连续,甚至不能判断是否有极限!例如函数:f(x)=x².sin(1/x) (x≠0);
f(x)=0 (x=0);
此函数是处处可导的!,但lim(x→0) f'(x)=lim (2x.sin(1/x)-cos(1/x))是不存在的