由已知得:f '(x)=x^2+ax+a
因为 A,B是函数f(x)的两给不同的极值点
所以 x^2+ax+a=0有两个不同根即x1,x2且x1+x2= -a,x1x2=a
即 a^2 -4a >0
得 a4
又AB斜率为 [f(x1) -f(x2)] / (x1 -x2)=[ 1/3(x1^3 -x2^3)+1/2a(x1^2 -x2^2)+a(x1 -x2) ]/ (x1 -x2)
=1/3 [(x1+x2)^2 -x1x2]+1/2a(x1+x2)+a
=1/3[( -a)^2 -a]+1/2a( -a)+a
= (-1/6)a^2+(2/3)a
因为直线AB的斜率不小于-2
所以 (-1/6)a^2+(2/3)a >= -2
解得 -2