(1)证明:连接OD;
∵AO=BO,BE=CE,
∴OE ∥ AC.
∴∠BOE=∠A,∠EOD=∠ODA.
又∵OD=OA,
∴∠A=∠ODA,
∴∠EOD=∠EOB.
又∵OD=OB,OE=OE,
∴△DOE≌△BOE,
∴∠ODE=∠B=90°.
即DE是⊙O的切线.
(2)由(1)得,OE ∥ AC,且OE=
1
2 AC;
∵四边形AOED为平行四边形,
∴OE=AD=CD,
∴四边形OECD为平行四边形,
∴∠C=∠DOE.
又∵∠A=∠DOE且∠B=90°,
∴∠A=∠C=45°.