1.a[1]=1,a[2]=2,a[3]=3
猜测a[n]=n
当n=1时,a[n]=a[1]=1
假设当n=k-1(k≥2)时成立,即a[k-1]=k-1
则2a[k]=2S[k]-2S[k-1]=a[k](a[k]+1)-a[k-1](a[k-1]+1)=a²[k]+a[k]-a²[k-1]-a[k-1]
即a²[k]-a[k]=a²[k-1]+a[k-1]=(k-1)²+(k-1)=(k-1)(k-1+1)=k(k-1)=k²-k
∴a²[k]-a[k]+1/4=k²-k+1/4,即(a[k]-1/2)²=(k-1/2)²
∴a[k]=1/2±(k-1/2)
即a[k]=k或者a[k]=1-k
∵k≥2,则1-k0
∴(-1)^(n-1)*λ