1、3条.
2和3、三角形中位线定义:连接三角形两边中点的线段叫做三角形的中位线.
定理
三角形的中位线平行于第三边,并且等于第三边的一半 .
编辑本段证明
如图,已知△ABC中,D,E分别是AB,AC两边中点. 求证DE平行且等于BC/2 法一:过C作AB的平行线交DE的延长线于F点. ∵CF∥AD ∴∠A=∠ACF ∵AE=CE、∠AED=∠CEF ∴△ADE≌△CFE ∴AD=CF ∵D为AB中点 ∴AD=BD ∴BD=CF ∴BCFD是平行四边形 ∴DF∥BC且DF=BC ∴DE=BC/2 ∴三角形的中位线定理成立. 法二:利用相似证 ∵D,E分别是AB,AC两边中点 ∴AD=AB/2 AE=AC/2 ∴AD/AE=AB/AC 又∵∠A=∠A ∴△ADE∽△ABC ∴DE/BC=AD/AB=1/2 ∴∠ADE=∠ABC ∴DF∥BC且DE=BC/2 法三:坐标法: 设三角形三点分别为(x1,y1),(x2,y2),(x3,y3) 则一条边长为 :根号(x2-x1)^2+(y2-y1)^2 另两边中点为((x1+x3)/2,(y1+y3)/2),和((x2+x3)/2,(y2+y3)/2) 这两中点距离为:根号((x2+x3)/2-(x1+x3)/2)^2+((y2+y3)/2-(y1+y3)/2)^2 最后化简时将x3,y3消掉正好中位线长为其对应边长的一半
编辑本段三角形中位线定理的逆定理
逆定理一:在三角形内,与三角形的两边相交,平行且等于三角形第三边一半的线段是三角形的中位线. 如图DE//BC,DE=BC/2,则D是AB的中点,E是AC的中点. 逆定理二:在三角形内,经过三角形一边的中点,且与另一边平行的线段,是三角形的中位线. 如图D是AB的中点,DE//BC,则E是AC的中点,DE=BC/2 【证法①】 取AC中点G ,联结DG 则DG是三角形ABC的中位线 ∴DG∥BC 又∵DE∥BC ∴DG和DE重合(过直线外一点,有且只有一条直线与已知直线平行) 图形