问题1:
⑴当AC=CD=DB时,
加上PC=PD,∠PCA=∠PDB=120º
可以满足△ACP∽△PDB.
⑵当AC≠DB时
必须是CD²=AC·DB时
可以满足△ACP∽△PDB
这个就是先假设△ACP∽△PDB,
那么DB:PC=PD=AC
∵ △PCD是等边三角形,所以PC=PD=CD
∴ DB:CD=CD:AC 即CD²=AC·DB
问题2
∵ △PCD是等边三角形
∴ ∠BPD+∠B=60º,∠APC+∠A=60º
∵ △ACP∽△PDB
∴ 要么∠BPD=∠A,要么∠BPD=∠APC
∴ ∠BPD+∠APC始终等于60º
∠APB=∠BPD+∠APC+∠CPD=60º+60º=120º
因此当△ACP∽△PDB时,∠APB的度数是120º