求1/(cosx)4以及ln[x+(x2+1)1/2]的不定积分,

2个回答

  • ∫ 1/cos⁴x dx

    = ∫ sec⁴x dx

    = ∫ sec²x * sec²x dx

    = ∫ (tan²x+1) dtanx

    = (1/3)tan³x + tanx + C

    ∫ ln[x+√(x²+1)] dx

    = x[x+√(x²+1)] - ∫ x dln[x+√(x²+1)]

    = x[x+√(x²+1)] - ∫ x * 1/[x+√(x²+1)] * [1+x/√(x²+1)] dx

    = x[x+√(x²+1)] - ∫ x/[x+√(x²+1)] * [√(x²+1)+x]/√(x²+1) dx

    = x[x+√(x²+1)] - ∫ x/√(x²+1) dx

    = x[x+√(x²+1)] - (1/2)∫ d(x²+1)/√(x²+1)

    = x[x+√(x²+1)] - (1/2) * 2√(x²+1) + C

    = x[x+√(x²+1)] - √(x²+1) + C