解题思路:由三角形中线的定义,可得BD=CD,又由折叠的性质,易求得∠BDC′=90°,BD=C′D,即可得△BDC′是等腰直角三角形.
∵AD是△ABC的中线,
∴BD=CD,
由折叠的性质可得:C′D=CD,∠ADC′=∠ADC=45°,
∴∠CDC′=90°,C′D=BD,
∴∠BDC′=180°-∠CDC′=90°,
∴△BDC′是等腰直角三角形.
故选:B.
点评:
本题考点: 翻折变换(折叠问题).
考点点评: 此题考查了折叠的性质、等腰直角三角形的判定以及三角形中线的定义.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.