x+y=m
x-y=n
∴ x=﹙m+n﹚/2
y=﹙m-n﹚/2
x·y=﹙m²-n²﹚/4
∴ ﹙x³+y³﹚²+﹙x³-y³﹚²
=﹙x+y﹚²﹙x²-xy+y²﹚²+﹙x-y﹚²﹚﹙x²+xy+y²﹚²
=m²[﹙x-y﹚²+xy]²+n²[﹙x+y﹚²-xy]²
=m²﹙n²+xy﹚²+n²﹙m²-xy﹚²
=m²·[﹙m²+3n²﹚/4]²+n²·[﹙3m²+n²﹚/4]²
x+y=m
x-y=n
∴ x=﹙m+n﹚/2
y=﹙m-n﹚/2
x·y=﹙m²-n²﹚/4
∴ ﹙x³+y³﹚²+﹙x³-y³﹚²
=﹙x+y﹚²﹙x²-xy+y²﹚²+﹙x-y﹚²﹚﹙x²+xy+y²﹚²
=m²[﹙x-y﹚²+xy]²+n²[﹙x+y﹚²-xy]²
=m²﹙n²+xy﹚²+n²﹙m²-xy﹚²
=m²·[﹙m²+3n²﹚/4]²+n²·[﹙3m²+n²﹚/4]²