设A=c/(a+b)
则A^=c^/(a+b)^,
又直角三角形,所以c^=a^+b^
所以A^=a^+b^/a^+2ab+b^=a^+b^+2ab-2ab/a^+2ab+b^=1-2ab/a^+2ab+b^
.=>1-2ab/2ab+2ab=1-2ab/4ab=1-1/2=1/2(a/b/c都大于0)
所以A=>二分之根号二
设A=c/(a+b)
则A^=c^/(a+b)^,
又直角三角形,所以c^=a^+b^
所以A^=a^+b^/a^+2ab+b^=a^+b^+2ab-2ab/a^+2ab+b^=1-2ab/a^+2ab+b^
.=>1-2ab/2ab+2ab=1-2ab/4ab=1-1/2=1/2(a/b/c都大于0)
所以A=>二分之根号二