原方程可转化为XY-X-Y+1=1即(X-1)*(Y-1)=1,故X-1=1,Y-1=1或X-1=-1,Y-1=-1便得所求
X/(XY+X+1)+Y/(YZ+Y+1)+Z/(ZX+Z+1)=XZ/Z(XY+X+1)+XYZ/XZ(YZ+Y+1)+Z/(ZX+Z+1)=XZ/(1+XZ+Z)+1/(Z+1+XZ)+Z/(ZX+Z+1)=1
原式可变为(M-5)X>1,即X>1/(M-5)
原方程可转化为XY-X-Y+1=1即(X-1)*(Y-1)=1,故X-1=1,Y-1=1或X-1=-1,Y-1=-1便得所求
X/(XY+X+1)+Y/(YZ+Y+1)+Z/(ZX+Z+1)=XZ/Z(XY+X+1)+XYZ/XZ(YZ+Y+1)+Z/(ZX+Z+1)=XZ/(1+XZ+Z)+1/(Z+1+XZ)+Z/(ZX+Z+1)=1
原式可变为(M-5)X>1,即X>1/(M-5)