lim(x趋近于无穷)[x²/(2x+3)]×[sin(2/x)]
令1/x=t
原式=
lim(t趋近于0)[1/t²/(2/t+3)]×[sin(2t)]
=lim(t趋近于0)[[sin(2t)]/(2t+3t²)]
=lim(t趋近于0)2t/(2t+3t²)
=1
lim(x趋近于无穷)[x²/(2x+3)]×[sin(2/x)]
令1/x=t
原式=
lim(t趋近于0)[1/t²/(2/t+3)]×[sin(2t)]
=lim(t趋近于0)[[sin(2t)]/(2t+3t²)]
=lim(t趋近于0)2t/(2t+3t²)
=1