指数函数图像问题指数函数y=2^(-x)的图像是什么样的?指数函数y=2^(-|x+1|)的图像是什么样的?

1个回答

  • 指数函数y=2^(-x)的图像是什么样的?

    y = 2^(-x) = [2^(-1)]^x = (1/2)^x

    函数定义域为整个实数域.

    x < 0时,y > 1.

    x = 0时,y = 1.

    x > 0时,y < 1.

    y = 0为 x趋于+无穷大时函数的渐近线.

    x趋于-无穷大时,函数趋于正无穷大.

    函数单调递减.

    因此,当 x 从负无穷大变化到 0 时,函数的图像从正无穷大单调递减至点(0,1).

    x 从 0 变化到正无穷大时,函数的图像从点(0,1)单调递减并无限接近它的渐近线 y = 0.

    指数函数y=2^(-|x+1|)的图像是什么样的?

    x < -1时,y = 2^(x+1) = 2*2^x

    x > -1时,y = 2^(-x-1) = (1/2)(1/2)^x

    x = -1时,y = 1.

    函数定义域为整个实数域.

    y = 0为 x趋于 -无穷大和 x趋于 +无穷大 时函数的渐近线.

    x 从负无穷大变化到 -1 时,函数的图像从函数的渐近线 y = 0 单调递增至点(-1,1).

    x 从 -1 变化到正无穷大时,函数的图像从点(-1,1)单调递减并无限接近它的渐近线 y = 0.