1
2^(n-1)an=n^2-(n-1)^2=2n-1
an=(2n-1)/2^(n-1)
2
an=(2n-1)/2^(n-1) 2an=(2n-1)/2^(n-2)
an-1=(2n-3)/2^(n-2) 2an-1=(2n-3)/2^(n-3)
..
a2=3/2 2a2=3
a1=1 2a1=2
..
[2Sn-2a1] - [Sn-(2n-1)/2^(n-1)] =2+1+..+1/2^(n-3)
Sn=
1
2^(n-1)an=n^2-(n-1)^2=2n-1
an=(2n-1)/2^(n-1)
2
an=(2n-1)/2^(n-1) 2an=(2n-1)/2^(n-2)
an-1=(2n-3)/2^(n-2) 2an-1=(2n-3)/2^(n-3)
..
a2=3/2 2a2=3
a1=1 2a1=2
..
[2Sn-2a1] - [Sn-(2n-1)/2^(n-1)] =2+1+..+1/2^(n-3)
Sn=