第一问:∵7m·n=6sin2B,又m(sinA,cosA),n=(cosC,sinC)
代入有方程7sinAcosC+7cosAsinC=6sin2B,解得:cosB=7/12.
∴B在第一象限,tanB=(√95)/(12*7)=(√95)/84.
第二问:由正弦定理知:a/sinA=b/sinB=c/sinC,sinA,sinB,sinC成等比数列,所以a,b,c 也成等比数列,即b^2=a*c.①
BA·(AC-AB)=BA·BC=c*a*cosB=(b^2)*cosB=14,
又由1问知cosB=7/12.②
解得b^2=24.
由余弦定理有:b^2=a^2+c^2-2accosB.③
联立①②③解得:a=4,b=√24,c=6.