解题思路:异分母分式相加减,先化为同分母分式,再加减.
x−3
x2−1−
3/1−x]
=[x−3
(x+1)(x−1)+
3/x−1]
=[x−3
(x+1)(x−1)+
3(x+1)
(x+1)(x−1)
=
4x
x2−1,
(1)故可知从A开始出现错误;
(2)不正确,不能去分母;
(3)
x−3
x2−1−
3/1−x]
=[x−3
(x+1)(x−1)+
3/x−1]
=
x−3
(x+1)(x−1)+
3(x+1)
(x+1)(x−1)
=
4x
x2−1.
点评:
本题考点: 分式的加减法.
考点点评: 本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.