先用“角边角”证明△ABE≌△CAD,
由于 AB=AC,∠BAC=∠C=60°,AE=CD,
所以 △ABE≌△CAD,
那么∠ABE=∠CAD
再证明∠BPQ=60°.
三角形的2个内角和等于第三个角的补角
所以:∠BPQ=∠ABE+∠BAD=∠CAD+∠BAD=60°
因此,∠PBQ=30°
所以BP=2PQ
先用“角边角”证明△ABE≌△CAD,
由于 AB=AC,∠BAC=∠C=60°,AE=CD,
所以 △ABE≌△CAD,
那么∠ABE=∠CAD
再证明∠BPQ=60°.
三角形的2个内角和等于第三个角的补角
所以:∠BPQ=∠ABE+∠BAD=∠CAD+∠BAD=60°
因此,∠PBQ=30°
所以BP=2PQ