设渐近线方程为y=ax+b.则:
a
=lim(x→∞){[x+√(x^2-x+1)]/x}
=lim(x→∞)[1+√(1-1/x+1/x^2)]
=[1+√(1-0+0)]
=2.
b
=lim(x→∞)[x+√(x^2-x+1)-ax]
=lim(x→∞)[x+√(x^2-x+1)-2x]
=lim(x→∞)[√(x^2-x+1)-x]
=lim(x→∞){[(x^2-x+1)-x^2]/[√(x^2-x+1)+x]}
=lim(x→∞){(1-x)/[√(x^2-x+1)+x]}
=lim(x→∞){(1/x-1)/[√(1-1/x+1/x^2)+1]}
=(0-1)/[√(1-0+0)+1]
=-1/2.
∴给定曲线的渐近线是:y=2x-1/2.