请问,曲线 y=x+(x^2-x+1)^1/2 的渐近线如何求?

1个回答

  • 设渐近线方程为y=ax+b.则:

    a

    =lim(x→∞){[x+√(x^2-x+1)]/x}

    =lim(x→∞)[1+√(1-1/x+1/x^2)]

    =[1+√(1-0+0)]

    =2.

    b

    =lim(x→∞)[x+√(x^2-x+1)-ax]

    =lim(x→∞)[x+√(x^2-x+1)-2x]

    =lim(x→∞)[√(x^2-x+1)-x]

    =lim(x→∞){[(x^2-x+1)-x^2]/[√(x^2-x+1)+x]}

    =lim(x→∞){(1-x)/[√(x^2-x+1)+x]}

    =lim(x→∞){(1/x-1)/[√(1-1/x+1/x^2)+1]}

    =(0-1)/[√(1-0+0)+1]

    =-1/2.

    ∴给定曲线的渐近线是:y=2x-1/2.