(2014•望江县模拟)设函数f(x)=(x-1)ex-kx2,(k∈R).

1个回答

  • 解题思路:(Ⅰ)先求出函数的导数,再讨论①若k≤0,②若0<k<[1/2],③若k=[1/2],④若k>[1/2]时的情况,从而求出k的范围;

    (Ⅱ)令g(k)=ln(2k)-k,则g′(k)=[1−k/k]≥0,得g(k)在([1/2],1]上递增,从而ln(2k)<k,进而ln(2k)∈[0,k],由(Ⅰ)中④可知当x=ln(2k)时,f(x)取到最小值,求出即可.

    (Ⅰ)f′(x)=x(ex-2k),

    ①若k≤0,令f′(x)=0,解得:x=0,

    x>0时,f′(x)>0,x<0时,f′(x)<0,

    ∴x=0是f(x)的极小值点,不合题意;

    ②若0<k<[1/2],令f′(x)=0,解得:x=0或x=ln(2k),ln(2k)<0,

    ∴f(x)在(-∞,ln(2k)),(0,+∞)递增,在(ln(2k),0)递减,

    ∴x=0是函数f(x)的极小值点,不合题意;

    ③若k=[1/2],f′(x)=x(ex-1),

    x>0时,f′(x)>0,x<0时,f′(x)>0,

    x=0时,f′(x)=0,

    ∴f(x)在R上递增,f(x)没有极值点;

    ④若k>[1/2],令f′(x)=0,解得:x=0或x=ln(2k),ln(2k)>0,

    ∴f(x)在(-∞,0),(ln(2k),+∞)递增,在(0,ln(2k))递减,

    ∴x=0是f(x)的极大值点.

    (Ⅱ)令g(k)=ln(2k)-k,则g′(k)=[1−k/k]≥0,

    ∴g(k)在([1/2],1]上递增,

    ∴g(k)≤ln2-1<0,

    ∴ln(2k)<k,

    ∴ln(2k)∈[0,k],

    由(Ⅰ)中④可知当x=ln(2k)时,f(x)取到最小值为:

    f(ln(2k))=-kln2(2k)+2kln(2k)-2k.

    点评:

    本题考点: 利用导数求闭区间上函数的最值;利用导数研究函数的极值.

    考点点评: 本题考查了函数的单调性,函数的最值问题,考查导数的应用,分类讨论思想,是一道综合题.