(1)∵DE是⊙O的切线,且DF过圆心O
∴DF⊥DE
又∵AC‖DE
∴DF⊥AC
∴DF垂直平分AC
(2)由(1)知:AG=GC
又∵AD‖BC
∴∠DAG=∠FCG
又∵∠AGD=∠CGF
∴△AGD≌△CGF(ASA)
∴AD=FC
∵AD‖BC且AC‖DE
∴四边形ACED是平行四边形
∴AD=CE
∴FC=CE5分
(3)连结AO; ∵AG=GC,AC=8cm,∴AG=4cm
在Rt△AGD中,由勾股定理得 GD=AD2-AG2=52-42=3cm
设圆的半径为r,则AO=r,OG=r-3
在Rt△AOG中,由勾股定理得 AO2=OG2+AG2
有:r2=(r-3)2+42解得 r=256
∴⊙O的半径为256cm.