定义在R上的函数y=f(x)对定义域内任意x满足条件f(x)=2b-f(2a-x),则y=f(x)关于点(a,b)对称
函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是
f (x) + f (2a-x) = 2b
证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x)
即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证.
(充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0)
∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) .
故点P‘(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征.