(1)实轴长为4√3,即2a=4√3,所以a=2√3,a=12 焦点(c,0),渐近线 y=-b/ax,即bx-ay=0 焦点到渐近线的距离=|bc-0|/√(a+b)=bc/c=b=√3 所以b=3 即双曲线方程为:x/12-y/3=1 (2) 设M(x1,√3/3x1-2),N(x2,√3/3x2-2) 则向量OM=(x1,√3/3x1-2),向量ON=(x2,√3/3x2-2),于是向量OM+向量ON=(x1+x2,√3/3(x1+x2)-4 ) 联立x/12-y/3=1,y=√3/3x-2 消去y得到:x-16√3x+84=0 由韦达定理得到:x1+x2=16√3 则√3/3(x1+x2)-4 =√3/3*16√3-4=12 所以 向量OM+向量ON=(16√3,12) 而向量OM+向量ON=t向量OD,所以t向量OD=(16√3,12) 得到:向量OD=(16√3/t,12/t) 于是D的坐标为(16√3/t,12/t) 而D在双曲线上,代入得到:(16√3/t)/12-(12/t)/3=1 即16/t=1 t=16 解得 t=4 或者 t=-4 而D在双曲线右支,即D的横坐标16√3/t>0 得到t>0 所以t=4 于是D的坐标为(4√3,3) 记得采纳哦,
设A,B分别为双曲线x/a-y/b=1(a>0,b>0)的左右顶点,双曲线的实轴长为4√3,焦点到渐近线的距离为√3拜
1个回答
相关问题
-
设A,B分别为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右顶点,双曲线的实轴长为4根号3
-
设A,B分别为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右顶点,双曲线的实轴长为4根号3
-
设A,B分别为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左,右定点,双曲线的实轴长为4倍根号3,焦点到
-
双曲线x^2/a^2-y^2/b^2=1(a>0,b>0) 的渐近线与实轴的夹角为a,过双曲线的焦点,垂直于实轴的弦长为
-
双曲线x^2/a^2-y^2/b^2=1(a>0,b>0) 的渐近线与实轴的夹角为a,过双曲线的焦点,垂直于实轴的弦长为
-
已知双曲线 =1( a >0, b >0)的实轴长为2,焦距为4,则该双曲线的渐近线方程是( ). A. y =±3
-
双曲线A^2分之X^2 -B^2分之Y^2=1(a>0,b>0)的渐近线与实轴夹角为A,过双曲线的焦点垂直于实轴的弦长为
-
设长轴长为4的椭圆C:x /a +y /b =1(a>b>0)的左右焦点分别为F1.F2,左右顶点为A.B,上顶点为N,
-
设双曲线 (a>0,b>0)的虚轴长为2,焦距为 ,则双曲线的渐近线方程为 [
-
F1,F2为双曲线C:x^2/a^2-y^2/b^2=1(a>0>,b>0)的焦点,A,B分别为双曲线的左右顶点,以F1