W(t)是布朗运动
W(t+a)-W(a)服从正态分布 N(0,t)
For example:
X(t)-X(0)= W(t+a)-W(a) N(0,t)
Moreover:
X(t+k)-X(k)=W(t+k+a)-W(a)-{W(k+a)-W(a)}=W(t+k+a)-W(k+a) N(0,t+k+a-k-a)~N(0,t) and is independ of k
Y(t+k)-Y(k)=aW((t+k)/a^2)-aW(k/a^2)~a(N(0,t/a^2))~N(0,t),is also independent of k
Y is also brownian motion