y=x-2sinxcosx
求导,则
y'=1-2(cos²x-sin²x)
=1-2cos2x
令y'=0,则1-2cos2x=0
解得x=kπ±(π/6)
由于x∈(-π/2,π/2),则
x=-π/6,x=π/6
由此可知
y'在(-π/2,-π/6)递增,在(-π/6,π/6)递减,在(π/6,π/2)递增
可见在x=-π/6处取得极大值,
此时
y=-π/6-2×(-1/2)×(√3/2)
=(√3/2)-π/6
y=x-2sinxcosx
求导,则
y'=1-2(cos²x-sin²x)
=1-2cos2x
令y'=0,则1-2cos2x=0
解得x=kπ±(π/6)
由于x∈(-π/2,π/2),则
x=-π/6,x=π/6
由此可知
y'在(-π/2,-π/6)递增,在(-π/6,π/6)递减,在(π/6,π/2)递增
可见在x=-π/6处取得极大值,
此时
y=-π/6-2×(-1/2)×(√3/2)
=(√3/2)-π/6