(1)
;
(2)当
时,
为等腰直角三角形
理由如下:如图:
∵点A与点B关于y轴对称,点C又在y轴上,
∴AC=BC
过点A作抛物线C 1的对称轴交x轴于D,过点C作CE⊥AD于E
∴当m=1时,顶点A的坐标为A(1,1+n),
∴CE=1
又∵点C的坐标为(0,n),
∴AE=1+n-n=1
∴AE=CE
从而∠ECA=45°,
∴∠ACy=45°
由对称性知∠BCy=∠ACy=45°,
∴∠ACB=90°
∴△ABC为等腰直角三角形。
(3)假设抛物线C 1上存在点P,使得四边形ABCP为菱形,则PC=AB=BC
由(2)知,AC=BC,
∴AB=BC=AC
从而△ABC为等边三角形
∴∠ACy=∠BCy=30°
∵四边形ABCP为菱形,且点P在C 1上,
∴点P与点C关于AD对称
∴PC与AD的交点也为点E,
因此∠ACE=90°-30°=60°
∵点A,C的坐标分别为A(m,m 2+n),C(0,n),
∴AE=m 2+n-n=m 2,CE=|m|
在Rt△ACE中,
∴
∴
故抛物线C 1上存在点P,使得四边形ABCP为菱形,此时
。