解题思路:换元,将函数转化为二次函数,利用配方法,即可求得函数的值域.
令t=sinx,(t∈[[1/2],1]),则y=2(1-t2)+3t+3=-2(t-[3/4])2+[49/8]
∵t∈[[1/2],1]),
∴t=[1/2]或1时,ymin=6,t=[3/4]时,ymax=[49/8]
∴函数的值域为[6,
49
8]
故答案为:[6,
49
8]
点评:
本题考点: 复合三角函数的单调性.
考点点评: 本题考查函数的值域,解题的关键是换元,将函数转化为二次函数,利用配方法求解.
解题思路:换元,将函数转化为二次函数,利用配方法,即可求得函数的值域.
令t=sinx,(t∈[[1/2],1]),则y=2(1-t2)+3t+3=-2(t-[3/4])2+[49/8]
∵t∈[[1/2],1]),
∴t=[1/2]或1时,ymin=6,t=[3/4]时,ymax=[49/8]
∴函数的值域为[6,
49
8]
故答案为:[6,
49
8]
点评:
本题考点: 复合三角函数的单调性.
考点点评: 本题考查函数的值域,解题的关键是换元,将函数转化为二次函数,利用配方法求解.