(I)由已知|AF|=c-a,AB=2a,|BF|=c+a,
∴4a=(c-a)+(c+a),即c=2a.
又∵
2a2
c=1,于是可解得a=1,c=2,b2=c2-a2=3.
∴双曲线方程为y2−
x2
3=1.
(II)∵S△MON=
1
2|OM|•|ON|•sin∠MON,
∴
1
2|OM|•|ON|•sin∠MON=−
7
2•
sin∠MON
cos∠MON
整理得|OM|•|ON|•cos∠MON=-7,即
OM•
ON=−7.
设M(x1,y1),N(x2,y2),于是
OM=(x1,y1),
ON=(x2,y2),
∴x1x2+y1y2=-7.
设直线MN的斜率为k,则MN的方程为y=kx+2.
∴
y=kx+2
y2−
x2
3=1消去y,整理得(3k2-1)x2+12kx+9=0.
∵MN与双曲线交于上支,
∴△=(12k)2-4×9×(3k2-1)=36k2+36>0,x1x2=
9
3k2−1<0,x1+x2=
−12k
3k2−1,
∴k2<
1
3.
∴x1x2+(kx1+2)(kx2+2)=-7,整理得x1x2+k2x1x2+2k(x1+x2)+4=-7,
代入得:
9
3k2−1+
9k2
3k2−1+
−24k2
3k2−1=−11,解得k2=
1
9,满足条件.
S△MBN=
1
2|BF|•|x2−x1|=
1
2×3×
(x1+x2)2−4x1x2
=
1
2×3×
144k2
(3k2−1)2−4•
9
3k2−1
=
1
2×3×3
10
=
9
10
2.