(2011•甘肃模拟)已知双曲线y2a2−x2b2=1(a>0,b>0)的上、下顶点分别为A、B,一个焦点为F(0,c)

1个回答

  • (I)由已知|AF|=c-a,AB=2a,|BF|=c+a,

    ∴4a=(c-a)+(c+a),即c=2a.

    又∵

    2a2

    c=1,于是可解得a=1,c=2,b2=c2-a2=3.

    ∴双曲线方程为y2−

    x2

    3=1.

    (II)∵S△MON=

    1

    2|OM|•|ON|•sin∠MON,

    1

    2|OM|•|ON|•sin∠MON=−

    7

    2•

    sin∠MON

    cos∠MON

    整理得|OM|•|ON|•cos∠MON=-7,即

    OM•

    ON=−7.

    设M(x1,y1),N(x2,y2),于是

    OM=(x1,y1),

    ON=(x2,y2),

    ∴x1x2+y1y2=-7.

    设直线MN的斜率为k,则MN的方程为y=kx+2.

    y=kx+2

    y2−

    x2

    3=1消去y,整理得(3k2-1)x2+12kx+9=0.

    ∵MN与双曲线交于上支,

    ∴△=(12k)2-4×9×(3k2-1)=36k2+36>0,x1x2=

    9

    3k2−1<0,x1+x2=

    −12k

    3k2−1,

    ∴k2<

    1

    3.

    ∴x1x2+(kx1+2)(kx2+2)=-7,整理得x1x2+k2x1x2+2k(x1+x2)+4=-7,

    代入得:

    9

    3k2−1+

    9k2

    3k2−1+

    −24k2

    3k2−1=−11,解得k2=

    1

    9,满足条件.

    S△MBN=

    1

    2|BF|•|x2−x1|=

    1

    2×3×

    (x1+x2)2−4x1x2

    =

    1

    2×3×

    144k2

    (3k2−1)2−4•

    9

    3k2−1

    =

    1

    2×3×3

    10

    =

    9

    10

    2.