已知向量m=(sinx,根3sinx),n=(sinx,-cosx),设fx=m·n,若函数gx的图像与fx的图像关于原

1个回答

  • 1

    m=(sinx,sqrt(3)sinx),n=(sinx,-cosx),则:m·n=(sinx,sqrt(3)sinx)·(sinx,-cosx)

    =sinx^2-sqrt(3)sinxcosx=1/2-(sqrt(3)sin2x+cos2x)/2=1/2-sin(2x+π/6),即:f(x)=1/2-sin(2x+π/6)

    g(x)的图像与f(x)关于原点对称,故:g(x)=-f(-x)=-(1/2-sin(-2x+π/6))=-1/2-sin(2x-π/6)

    x∈[-π/4,π/6],则:-2π/3≤2x-π/6≤π/6,当2x-π/6=-π/2,即:x=-π/6时,g(x)取得最大值:

    -1/2+1=1/2

    2

    是f(A)-g(A)=3/2吧?即:1/2-sin(2A+π/6)+1/2+sin(2A-π/6)=3/2,即:1+2cos(2A)sin(-π/6)=3/2

    即:cos(2A)=-1/2,因:A是锐角,故:0