∵cos(x+π/6)=1/4
∴cos(5π/6+x)=cos[π-(π/6+x)]
=-cos(π/6+x)
=-1/4
cos(π/3-x)^2=cos[π/2-(π/6+x)]^2
=sin(π/6+x)^2
=1-cos(π/6+x)^2
=1-(1/4)^2
=15/16
∴cos(5π/6-x)+cos(π/3-x)^2=-1/4+15/16
=11/16
∵cos(x+π/6)=1/4
∴cos(5π/6+x)=cos[π-(π/6+x)]
=-cos(π/6+x)
=-1/4
cos(π/3-x)^2=cos[π/2-(π/6+x)]^2
=sin(π/6+x)^2
=1-cos(π/6+x)^2
=1-(1/4)^2
=15/16
∴cos(5π/6-x)+cos(π/3-x)^2=-1/4+15/16
=11/16