A是实对称矩阵,存在可逆矩阵P,使得P^(-1)AP=diag(λ1,λ2,λ3)
A=Pdiag(λ1,λ2,λ3)P^(-1)
A^2=[Pdiag(λ1,λ2,λ3)P^(-1)][Pdiag(λ1,λ2,λ3)P^(-1)]=Pdiag(λ1^2,λ2^2,λ3^2)P^(-1)=0
∴λ1^2=λ2^2=λ3^2=0
故λ1=λ2=λ3=0
因此 A=Pdiag(λ1,λ2,λ3)P^(-1)=0
A是实对称矩阵,存在可逆矩阵P,使得P^(-1)AP=diag(λ1,λ2,λ3)
A=Pdiag(λ1,λ2,λ3)P^(-1)
A^2=[Pdiag(λ1,λ2,λ3)P^(-1)][Pdiag(λ1,λ2,λ3)P^(-1)]=Pdiag(λ1^2,λ2^2,λ3^2)P^(-1)=0
∴λ1^2=λ2^2=λ3^2=0
故λ1=λ2=λ3=0
因此 A=Pdiag(λ1,λ2,λ3)P^(-1)=0