解题思路:直接利用偶函数的性质:在关于原点对称的区间上单调性相反即可得出其在(-∞,0)上的单调性;再利用函数单调性的定义证明结论即可.
因为偶函数在关于原点对称的区间上单调性相反;
且f(x)在(0,+∞)上是增函数,
故f(x)在(-∞,0)是减函数.
证明如下:若-∞<x1<x2<0,那么0<-x2<-x1<+∞.
由于偶函数在(0,+∞)上是增函数,故有:f(-x2)<f(-x1)
又根据偶函数的性质可得:f(-x1)=f(x1),f(-x2)=f(x2)
综上可得:f(x1)>f(x2)
故f(x)在(-∞,0)上是减函数
点评:
本题考点: 奇偶性与单调性的综合.
考点点评: 本题主要考查函数奇偶性与单调性的综合问题.这一类型题目,主要是考查偶函数在关于原点对称的区间上单调性相反,而奇函数在关于原点对称的区间上单调性相同这一结论.