怎么样求解上三角矩阵的逆矩阵就是这个

1个回答

  • 解法1.用初等行变换将(A,E)化为(E,A^-1)

    (A,E) =

    1 2 1 -2 1 0 0 0

    0 5 3 -2 0 1 0 0

    0 0 3 5 0 0 1 0

    0 0 0 3 0 0 0 1

    r4*(1/3),r1+2r4,r2+2r4,r3-5r4

    1 2 1 0 1 0 0 2/3

    0 5 3 0 0 1 0 2/3

    0 0 3 0 0 0 1 -5/3

    0 0 0 1 0 0 0 1/3

    r2-r3,r3*(1/3),r1-r3

    1 2 0 0 1 0 -1/3 11/9

    0 5 0 0 0 1 -1 7/3

    0 0 1 0 0 0 1/3 -5/9

    0 0 0 1 0 0 0 1/3

    r2*(1/5),r1-2r2

    1 0 0 0 1 -2/5 1/15 13/45

    0 1 0 0 0 1/5 -1/5 7/15

    0 0 1 0 0 0 1/3 -5/9

    0 0 0 1 0 0 0 1/3

    A^-1 =

    -2/5 1/15 13/45

    1/5 -1/5 7/15

    0 1/3 -5/9

    0 0 1/3

    解2.用分块矩阵方法求逆

    A =

    B C

    0 D

    当B,D可逆时A也可逆,且 A^-1 =

    B^-1 -B^-1CD^-1

    0 D^-1