解题思路:(1)由正方形的性质可证△ABP≌△ADP,即BP=DP;
(2)当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立;
(3)由旋转的性质和正方形的性质可证△BEC≌△DFC,即BE=DF.
(1)证明:
证法一:在△ABP与△ADP中,
∵AB=AD∠BAC=∠DAC,AP=AP,
∴△ABP≌△ADP,
∴BP=DP.(2分)
证法二:利用正方形的轴对称性,可得BP=DP.(2分)
(2)不是总成立.(3分)
当四边形PECF的点P旋转到BC边上时,DP>DC>BP,此时BP=DP不成立,
是当P点在AC的延长线上时,BP=DP,
说明:未用举反例的方法说理的不得分.
(3)连接BE、DF,则BE与DF始终相等,
,
在图1中,由正方形ABCD可证:
AC平分∠BCD,
∵PE⊥BC,PF⊥CD,
∴PE=PF,∠BCD=90°,
∴四边形PECF为正方形.(7分)
∴CE=CF,
∵∠DCF=∠BCE,
BC=CD,
∴△BEC≌△DFC,
∴BE=DF.(8分)
点评:
本题考点: 旋转的性质;全等三角形的性质;全等三角形的判定.
考点点评: 本题考查了旋转的性质和全等三角形的判定,以及正方形的性质.