已知如图,在等腰三角形ABCD中,AD平行与BC,AB=CD.AD=3,BC=9,tan∠ABC等于4/3 ,直线MN是

1个回答

  • 作AG⊥BC,垂足G,作DH⊥BC,垂足H,

    GH=AD=3,BG=HC=(BC-GH)/2=(9-3)/2=3;

    tan∠ABC=4/3=AG/BG,

    AG=BG*4/3=3*4/3=4,

    MN=AG=3;

    若PD‖AB‖CF,

    ∠ECF=∠PDC,[内错角]

    ∠F=∠ABP,[内错角]

    等腰三角形ABCD,

    ∠ABC=∠DCB,

    直线MN是梯形的对称轴,PB=PC,

    ∠PBN=∠PCN,

    ∠DCP=∠DCB-∠PCN=∠ABC-∠PBN=∠ABP=∠F;[∠ABC=∠DCB,∠F=∠ABP]

    ∠CEF=180°-∠F-∠ECF=180°-∠DCP-∠PDC=∠DPC,

    △EFC∽△PDC,[AAA]

    延长DP与BC交于J,PD‖AB,PJ‖AB,

    ∠ADJ=∠DJC,[内错角]

    ∠DJC=∠ABC,[同位角]

    所以∠ADJ=∠ABC,

    tan∠ADJ=tan∠ABC=4/3,

    MP/MD=4/3,

    MP=MD*4/3=(AD/2)*4/3=(3/2)*4/3=2,

    PN=MN-MP=4-2=2.