作AG⊥BC,垂足G,作DH⊥BC,垂足H,
GH=AD=3,BG=HC=(BC-GH)/2=(9-3)/2=3;
tan∠ABC=4/3=AG/BG,
AG=BG*4/3=3*4/3=4,
MN=AG=3;
若PD‖AB‖CF,
∠ECF=∠PDC,[内错角]
∠F=∠ABP,[内错角]
等腰三角形ABCD,
∠ABC=∠DCB,
直线MN是梯形的对称轴,PB=PC,
∠PBN=∠PCN,
∠DCP=∠DCB-∠PCN=∠ABC-∠PBN=∠ABP=∠F;[∠ABC=∠DCB,∠F=∠ABP]
∠CEF=180°-∠F-∠ECF=180°-∠DCP-∠PDC=∠DPC,
△EFC∽△PDC,[AAA]
延长DP与BC交于J,PD‖AB,PJ‖AB,
∠ADJ=∠DJC,[内错角]
∠DJC=∠ABC,[同位角]
所以∠ADJ=∠ABC,
tan∠ADJ=tan∠ABC=4/3,
MP/MD=4/3,
MP=MD*4/3=(AD/2)*4/3=(3/2)*4/3=2,
PN=MN-MP=4-2=2.