利用恒等式(n+1)=n+3n+3n+1,可以得到: 1+2+3+4+……+n=1*(2-1)+……n*(n+1-1)=1*2+2*3+……+n*(n+1)-(1+2+……+n)=2*(2C1+3C2+……+(n+1)Cn)(C为排列标志)-n*(n+1)2=(n+2)C3+1-n*(n+1)2=n(n+1)(2n+1)/6
1+2+3+4+……+n=n(n+1)(2n+1)/6
1个回答
相关问题
-
1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
-
1/2-1/n+1<1/2^2+1/3^2+……+1/n^2<n-1/n(n=2,3,4,5,6.
-
1²﹢2²﹢3²﹢…n²=﹙1/6﹚n﹙n+1﹚﹙2n+2﹚求2²+4
-
数学公式1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
-
计算(1*2*4+2*4*4+...+n*2n*4n/1*1*9+2*6*18+...+n*3n*9n)
-
1*N+2*(N-1)+3*(N-2)+...+N*1=1/6N(N+1)(N+2)
-
求和1*4+2*5+3*6+...+n(n+3),已知1^2+2^2+3^2+...+n^2=(1/6)n(n+1)(2
-
1\n(n+1)+1\(n+1)(n+2)+1\(n+2)(n+3)+1\(n+3)(n+4)
-
计算:(1*2*4+2*4*8+...+n*2n*4n)/(1*3*9+2*6*18+...+n*3n*9n)
-
(n+1)(n+2)/1 +(n+2)(n+3)/1 +(n+3)(n+4)/1