(1)设L的斜率为K
∵f '(x)=3*x²
∴K=f ' (x1)=3*(x1)²
∴L:y-(x1)³+a=3(x1)² *(x-x1)即 y-(x1)³+a=3(x1)² x-3(x1)³
(2)将点(x2,0)代入直线方程L
得 x2=(2/3)*x1 + a / 3(x1)²
∵a>0,x1>0
∴x2=(2/3)x1 + a / 3(x1)²
=(1/3)x1 + (1/3)x1 + a / 3(x1)²≥ ³√(a/27) = ³√a 得证
(1)设L的斜率为K
∵f '(x)=3*x²
∴K=f ' (x1)=3*(x1)²
∴L:y-(x1)³+a=3(x1)² *(x-x1)即 y-(x1)³+a=3(x1)² x-3(x1)³
(2)将点(x2,0)代入直线方程L
得 x2=(2/3)*x1 + a / 3(x1)²
∵a>0,x1>0
∴x2=(2/3)x1 + a / 3(x1)²
=(1/3)x1 + (1/3)x1 + a / 3(x1)²≥ ³√(a/27) = ³√a 得证