证明:cos(π/7)cos(2π/7)cos(3π/7) =2sin(π/7)cos(π/7)cos(2π/7)cos(3π/7)/[2sin(π/7)] =2sin(2π/7)cos(2π/7)cos(3π/7)/[8sin(π/7)] =2sin(4π/7)cos(3π/7)/[8sin(π/7)] =2sin(3π/7)cos(3π/7)/[8sin(π/7)] =sin(6π/7)/[8sin(π/7)] =1/8 欲证tan(π/7)tan(2π/7)tan(3π/7)=√7 只需8sin(π/7)sin(2π/7)sin(3π/7)=√7 右端是无理数,直接证明有困难,考虑平方,64sin(π/7)sin(2π/7)sin(3π/7)=7 即8[1-cos(2π/7)][1-cos(4π/7)][1-cos(6π/7)]=7 亦即8[1-(cos(2π/7)+cos(4π/7)+cos(6π/7))+cos(2π/7)cos(4π/7)+cos(4π/7)cos(6π/7)+cos(6π/7)cos(2π/7)-cos(2π/7)cos(4π/7)cos(6π/7)]=7 而cos(2π/7)cos(4π/7)cos(6π/7)=cos(2π/7)cos(3π/7)cos(π/7)=1/8 故只需证 cos(2π/7)cos(4π/7)+cos(4π/7)cos(6π/7)+cos(6π/7)cos(2π/7) =cos(2π/7)+cos(4π/7)+cos(6π/7) 左边=cos(4π/7)[cos(2π/7)+cos(6π/7)]+cos(6π/7)cos(2π/7) =cos(4π/7)2cos(4π/7)cos(2π/7)+cos(6π/7)cos(2π/7) =cos(2π/7)×2cos(4π/7)+cos(6π/7)cos(2π/7) =cos(2π/7)(1+cos(8π/7))+cos(6π/7)cos(2π/7) =cos(2π/7)+cos(2π/7)[cos(8π/7))+cos(6π/7)] =cos(2π/7)+cos(2π/7)×2cosπcos(π/7) =cos(2π/7)-2cos(2π/7)cos(π/7) =cos(2π/7)-(cos(3π/7)+cos(π/7)) =cos(2π/7)+cos(4π/7)+cos(6π/7)=右边
证明(tanπ/7)(tan2π/7)(tan3π/7)=√7
1个回答
相关问题
-
求值:“tanπ/7+tan2π/7+tan3π/7+tan4π/7+tan5π/7+6π/7+tanπ”求详细解题过程
-
三角函数求值tanπ/7+tan2π/7+tan4π/7=
-
计算sin(-7π/2)+tanπ-2cos0+tan9π/4-sin7π/3
-
2sin ^2(19π/4)+tan^2(8π/3)*tan(-7π/4)
-
1.利用定义求sin7π/3,cos7π/3,tan7π/3
-
tan(α+π/6)=1/2,tan(β-7/6π)=1/3,求tan(α+β)
-
确定符号 sin9π/7*cos7π/9*tan19π/7
-
比较tan8π/7与tanπ/8的大小
-
a=sin5π/7,b=cos5π/7,c=tan5π/7
-
证明tan(π/9)[tan(2π/9)+tan(3π/9)+tan(4π/9)]=3