∫arcsinx*arccosxdx永不分积分法怎么求

2个回答

  • 先化简t=arcsin(x) x=sin(t)

    arccos(x)=π/2 -t

    ∫t(π/2 -t)dsin(t)=t(π/2 -t)sin(t) -∫ sint d(t(π/2 -t))

    =t(π/2 -t)sin(t) -∫ (π/2-2t)sint dt

    =t(π/2 -t)sin(t) +∫ (π/2-2t) dcos(t)

    =t(π/2 -t)sin(t) + (π/2-2t) cos(t)-∫cos(t)d (π/2-2t)

    =t(π/2 -t)sin(t) + (π/2-2t) cos(t)+∫2cos(t)dt

    =t(π/2 -t)sin(t) + (π/2-2t) cos(t)+2sin(t)+C

    =arcsin(x)arccos(x)x+(arccos(x)-arcsin(x))√(1-x²)+2arcsin(x)+C