求导使用链式法则
1、
[ln(x+√(x²-a²)]'
=1/[x+√(x²-a²)] * [x+√(x²-a²)]'
=1/[x+√(x²-a²)] * [1+ x/√(x²-a²)]
=1/√(x²-a²)
2、
(ln tan2/x)'
=1/(tan2/x) *(tan2/x)'
=1/(tan2/x) * 1/ (cos2/x)² *(2/x)'
=1/(tan2/x) * 1/ (cos2/x)² *(-2/x²)
= -2/ [(tan2/x) *(cos2/x)² *(1/x²)]
3、
y^3+y² -2x=0
求导得到3y² *y' +2y*y' -2=0
所以y'= 2/(3y²+2y)
y=1时,y'=2/5