已知曲线f(x)=x n+1 (n∈N * )与直线x=1交于点P,若曲线y=f(x)在点P处的切线与x轴交点的横坐标为

1个回答

  • 由题意可得P(1,1)

    对函数f(x)=x n+1求导可得,f′(x)=(n+1)x n

    ∴y=f(x)在点P处的切线斜率K=f′(1)=n+1,切线方程为y-1=(n+1)(x-1)

    令y=0可得, x n =

    n

    n+1

    ∴x 1x 2…x 2011=

    1

    2 •

    2

    3 •

    3

    4 …

    2011

    2012 =

    1

    2012

    ∴log 2012x 1+log 2012x 2+…+log 2012x 2011=log 2012(x 1x 2…x n

    = log 2012

    1

    2012 =-1

    故选B