S=a^2-(b-c)2=a^2-(a^2+b^2+2ab-4ab)=a^2-(b+c)^2+4bc=a^2+4bc-8^2,
要使S有最大值,则a,bc就必须有最大值,
b+c=8≥2√bc,当且仅当b=c时,bc有最大值,此时b=c=4.
S=1/2*sinA*bc=8sinA,
要使S最大,sinA=1,
A=90度,
S最大=8.
S=a^2-(b-c)2=a^2-(a^2+b^2+2ab-4ab)=a^2-(b+c)^2+4bc=a^2+4bc-8^2,
要使S有最大值,则a,bc就必须有最大值,
b+c=8≥2√bc,当且仅当b=c时,bc有最大值,此时b=c=4.
S=1/2*sinA*bc=8sinA,
要使S最大,sinA=1,
A=90度,
S最大=8.