设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的n∈N+,am与2的等差中项等于Sn与2的等比中项

1个回答

  • (2)2,6,10

    (2)由题意,2sn=[(an+2)/2]的平方,sn=an平方/8+an/2+1/2,

    则s(n-1)=a(n-1)平方+a(n-1)/2+1/2,两式相减得:

    sn-s(n-1)=an=(an平方-an-1平方)/8+(an-an-1)/2,

    化简得:(an+an-1)×(an-an-1-4)=0

    因为数列由正数组成,故an+an-1不等于零,an-an-1-4=0

    an=an-1+4,此数列为等差数列,an=a1+4(n-1),

    又因为2s1=2a1=[(a1+2)/2]的平方,解得a1=2,所以此等差数列通项公式为:an=2+4(n-1)=4n-2