因为半径AC的斜率是y0/x0,(圆心C是坐标原点),
所以过点A的切线与AC垂直,斜率是-x0/y0,
切线方程是y-y0=-x0/y0(x-x0)
去分母得y0y-(y0)^2=-x0x+(x0)^2
即x0x+y0y=(x0)^2+(y0)^2
又因为A(x0,y0)在圆上,即有(x0)^2+(y0)^2=r^2,
所以切线方程是x0x+y0y=r^2
因为半径AC的斜率是y0/x0,(圆心C是坐标原点),
所以过点A的切线与AC垂直,斜率是-x0/y0,
切线方程是y-y0=-x0/y0(x-x0)
去分母得y0y-(y0)^2=-x0x+(x0)^2
即x0x+y0y=(x0)^2+(y0)^2
又因为A(x0,y0)在圆上,即有(x0)^2+(y0)^2=r^2,
所以切线方程是x0x+y0y=r^2