(1)
a1=2,
na(n+1)=sn+n(n+1) ①
n≥2时,
(n-1)an=S(n -1)+(n-1)n ②
①-②:
na(n+1)-(n-1)an=an+2n
∴na(n+1)-nan=2n
∴a(n+1)-an=2
又a2=S1+2=a1+2=4
∴a2-a1=2
那么
∴{an}为等差数列
(2)
an=2n
Sn=(2+2n)*n.2=(n+1)n
Tn=sn/2^n=(n+1)n/2^n
由T(n+1)/Tn
=[(n+2)(n+1)/2^(n+1)]/[(n+1)n/2^n]
=(n+2)/(2n)2,n≥3
当n≥3且n∈N时,Tn>T(n+1)
(3)
∵n≥3时,T(n+1)T4>T5>.
又T1=1,T2=3/2,T3=3/2
∴Tn≤3/2
∵对一切正整数n,总有Tn≤m
∴m≥3/2