证明:
(A.)分别作E,F关于D为对称中心的对称点G,H; 并连EG,FH,则
∵EH,FG互相平分于D点,∴E,F,H,G 构成平行四边形,
∵QD为△FEG的中位线,∴QD//EG ,∴∠QDF=∠EGD
又∵ED=AC,DG=DF=AB,∠EDG=180°-∠EDF=∠BAC,
∴△GDE≌△BAC ∴∠EGD=∠ABC,
即∠QDF=∠ABC,
∠BDF=∠QDB+∠QDF=180°-∠ABC-∠BPD+∠ABC,
∴∠BDF+∠BPD=180°
(B.)在上述证明过程中,D在三角形ABC的边BC上(不与B 、C 重合)
,只要DQ不与AB平行,∠BPD总是存在,现令DQ//AB时,∠BPD=0°,此时
GF与BC重合,即B,D,F共线,令∠BDF=180°.∴∠BDF+∠BPD=180°
因此,当三角形DEF 绕点D 旋转,其他条件不变,∠BDF+∠BPD=180°结论始终成立