(1)连接AC,AC∩BD=O,
连接A 1O,则∠A 1OA为二面角A﹣BD﹣A 1的平面角
∵正方体ABCD﹣A 1B 1C 1D 1的棱长为a,
∴AO=
a
∴tan∠A 1OA=
;
(2)过A作AE⊥A 1O,垂足为E,
∵AE⊥BD,A 1O∩BD=O,
∴AE⊥平面A 1BD
∴∠AA 1O为AA 1与平面A 1BD所成的角
∵A 1A=a,AO=
a
∴A 1O=
a
∴AA 1与平面A 1BD所成的角的余弦值为
.
(1)连接AC,AC∩BD=O,
连接A 1O,则∠A 1OA为二面角A﹣BD﹣A 1的平面角
∵正方体ABCD﹣A 1B 1C 1D 1的棱长为a,
∴AO=
a
∴tan∠A 1OA=
;
(2)过A作AE⊥A 1O,垂足为E,
∵AE⊥BD,A 1O∩BD=O,
∴AE⊥平面A 1BD
∴∠AA 1O为AA 1与平面A 1BD所成的角
∵A 1A=a,AO=
a
∴A 1O=
a
∴AA 1与平面A 1BD所成的角的余弦值为
.