c^2=a^2+(a+1)^2=2a^2+2a+1
所以e^2=c^2/a^2=(2a^2+2a+1)/a^2
=2+2/a+1/a^2
=(1/a)^2+2*(1/a)+2
=(1/a+1)^2+1
以1/a为自变量
则对称轴1/a=-1,开口向上
a>1
0
c^2=a^2+(a+1)^2=2a^2+2a+1
所以e^2=c^2/a^2=(2a^2+2a+1)/a^2
=2+2/a+1/a^2
=(1/a)^2+2*(1/a)+2
=(1/a+1)^2+1
以1/a为自变量
则对称轴1/a=-1,开口向上
a>1
0