证明:作⊿ABC的外接圆,延长AP,交圆于D,连接BD.
∵AP*PD=PB*PC.(相交弦定理)
∴AP²+PB*PC=AP²+AP*PD=AP*(AP+PD)=AP*AD.
∵AB=AC.
∴∠ABP=∠C=∠ADB;
又∠BAP=∠DAB,则⊿BAP∽⊿DAB.
∴AB/AD=AP/AB,AB²=AP*AD.
故AB²=AP²+PB*PC.(等量代换)
证明:作⊿ABC的外接圆,延长AP,交圆于D,连接BD.
∵AP*PD=PB*PC.(相交弦定理)
∴AP²+PB*PC=AP²+AP*PD=AP*(AP+PD)=AP*AD.
∵AB=AC.
∴∠ABP=∠C=∠ADB;
又∠BAP=∠DAB,则⊿BAP∽⊿DAB.
∴AB/AD=AP/AB,AB²=AP*AD.
故AB²=AP²+PB*PC.(等量代换)