已知log12(27)=a,证明log6(16)=[4(3-a)]/3+a

1个回答

  • 本题多次应用换底公式.

    log12(27)=log3(27)/log3(12)

    =3/log3(3*4)

    =3/[log3(3)+log3(4)]

    =3/[1+log2(4)/log2(3)]………………这里是两个分式,写到纸上就明白了.

    =3/[1+2/log2(3)]

    =a

    所以log2(3)=2a/(3-a)…………这才是化简真正想要的

    再看所给的式子

    log6(16)=log2(16)/log2(6)

    =4/log2(2*3)

    =4/[1+log2(3)]

    将上面所求的log2(3)=2a/(3-a)代入就会得到

    上式=4/[1+2a/(3-a)]

    =4/[(3-a+2a)/(3-a)]…………同分

    =4(3-a)/(3+a)

    证明完毕

    过程很具体,不知道是不是你想要的.