(1)
f(x)=sinwxcoswx+coswxcoswx=1/2sin2wx+1/2cos2wx+1/2=√(根号)2/2sin(2wx+π/4)+1/2
因为f(x)的周期为π,所以w=1
f(x)=√(根号)2/2sin(2x+π/4)+1/2
又因为-π/6 ≤x≤π/3,所以-π/12≤2x+π/4≤11π/12
所以f(x)min=√(根号)2/2sin(-π/12)+1/2=(3-√(根号)3)/4
f(x)max=√(根号)2/2sin(π/2)+1/2=(√(根号2+1)/2
(2)
因为函数f(x )的图象的一条对称轴为x=π/3,f(x)=√(根号)2/2sin(2wx+π/4)+1/2
0